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1 Motivation

Chronic myeloid leukemia (CML) is a myeloproliferative disorder caused by the formation of the
Philadelphia chromosome, which produces the BCR-ABL gene that codes for a constitutively ac-
tive tyrosine kinase. The development of first (imatinib (IM)) and second generation (dasatinib,
nilotinib) tyrosine kinase inhibitors (TKIs) has significantly improved patient outlook, sending a ma-
jority of patients into remission [4]. Still, several open questions about the dynamics of CML and
TKIs remain. Mathematical modeling has been successfully applied to studying the effects of TKIs,
combination therapies, and drug resistance. In the following, we will focus on applications of an
ordinary differential equations (ODEs) and an agent-based model (ABM) to the study of CML.

2 Mathematical Models of CML

2.1 The Michor Model

In the model of Michor et al. [2], hematopoietic cells are divided into four categories based on their
maturity: stem cells (x0), progenitors (x1), differentiated cells (x2), and terminally differentiated cells
(x3). Leukemic cells are assumed to differentiate through the same stages, represented by y0, y1, y2,
and y3. The mathematical model for these populations is given by

ẋ0 = (
rx

1 + px(x0 + y0)
− d0)x0, (1a)

ẋ1 = axx0 − d1x1, (1b)

ẋ2 = bxx1 − d2x2, (1c)

ẋ3 = cxx2 − d3x3, (1d)

ẏ0 = (
ry

1 + py(x0 + y0)
− d0)y0, (2a)

ẏ1 = ayy0 − d1y1, (2b)

ẏ2 = byy1 − d2y2, (2c)

ẏ3 = cyy2 − d3y3. (2d)

In Equations (1a) and (2a), r is the division rate, and p is the sensitivity of the stem cell population to
crowding. The x0+y0 in the denominators incorporates competition between the healthy and leukemic
stem cell populations. In Equations (1b)-(1d) and (2b)-(2d), a, b, and c are the differentiation rates
of stem cells, progenitors, and differentiated cells. The parameters d0, d1, d2, and d3 are the death
rates of stem cells, progenitors, differentiated cells, and terminally differentiated cells. The healthy
and leukemic populations are assumed to differ in their division rates, sensitivity to crowding, and
differentiation rates.

Treatment with TKIs is represented in the model by decreases in ay and by. In order to compare
their simulations of therapy to clinical data, the following formula is used to approximate the BCR-
ABL ratio, a measurement used to evaluate a patient’s progress during therapy.

BCR-ABL ratio =
100αy3
2x3 + y3

. (3)

The BCR-ABL ratio is the ratio of the expression of BCR-ABL in the blood to the expression of a
control gene, either BCR or ABL. Most cells in the blood are assumed to be terminally differentiated,
so the contributions of the other compartments are ignored in the calculation. Each leukemic cell
has one copy of BCR-ABL and one copy of the control gene, while each healthy cell has two copies of
the control gene. This ratio is multiplied by an adjustment factor α to address the differing levels of
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expression of the two genes, and by 100 in order to represent a percentage when α = 1, and otherwise
a value between 0 to 100α.

2.2 The Roeder Model
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Figure 1: A state diagram for the Roeder model.

The ABM proposed by Roeder et al. [3], shown in Figure 1, divides hematopoietic cells into stem
cells (STC), precursors (P ), and mature cells (M). Stem cells are either quiescent, denoted by A, or
cycling, denoted by Ω. Each individual stem cell is characterized by an affinity a(t) ∈ [amin, amax],
which determines the cell’s tendency to be quiescent or cycle. At each time step, a quiescent stem
cell will enter the cell cycle with probability ω, and an uncommitted cycling stem cell will become
quiescent with probability α, where

ω(Ω(t), a(t)) =
amin

a(t)
fω(Ω(t)), (4)

α(A(t), a(t)) =
a(t)

amax

fα(A(t)). (5)

Here, Ω(t) and A(t) are the total number of cycling and quiescent stem cells. The functions fω
and fα are decreasing sigmoidal functions such that the probability of a cell transitioning into either
compartment decreases as that compartment becomes larger. Individual cells with affinity close to
amax will tend to be quiescent, while those with affinity close to amin will tend to cycle. If a quiescent
stem cell remains quiescent, then its affinity will increase by a factor of r. If a cycling stem cell
continues to cycle, its affinity will decrease by a factor of d. Thus, cells that remain in A or Ω during
a time step become more likely to remain there in the future.

Cycling stem cells are also characterized by a counter c(t) that marks their place in the cell cycle.
Quiescent cells enter the cell cycle at hour 32, which marks the beginning of the S, G2, and M stages,
during which a cell is committed to division. At hour 48, a cycling stem cell divides into two daughter
cells, which enter the G1 phase of the cell cycle and have their counters reset to zero. During G1,
cycling cells become uncommitted to division, transitioning to quiescence at a rate α(A(t), a(t)).

A cycling cell whose affinity falls below amin will differentiate into a precursor cell. Precursors
divide once per day for twenty days. On their final division, each precursor cell differentiates into a
mature cell, which lives for an additional eight days before dying.

Both healthy and leukemic cells are assumed to follow this hierarchy. Leukemic stem cells are
assumed to transition between quiescence and cycling at much higher rates, and the probability of
entering the cell cycle ω(Ω(t), a(t)) is only slightly affected by Ω(t). TKI therapy results in the killing
of cycling leukemic stem cells at a rate of rdeg. Additionally, cycling stem cells become IM-affected
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at a rate rinh, which results in a decrease in the probability of a leukemic cell entering the cell cycle.
As in [2], Equation (3) is used to approximate the simulated patient’s BCR-ABL ratio.

3 Applications

3.1 Dynamics of TKI Therapy

Based on data collected from CML patients during their first year of therapy, Michor et al. [2] find
that IM therapy often leads to a biphasic exponential decline in BCR-ABL ratio. The slope of the
first decline indicates the death rate of differentiated cells, and the second slope represents the death
rate of the progenitor compartment. Because IM is assumed to have no effect on leukemic stem
cells in their model, this population continues to expand during therapy. As a result, their model
predicts a relapse within about three years of therapy in all patients, independent of drug resistance
or intolerance. Thus, their initial modeling results can be representative of at most the first few years
of therapy.

In [10], patient data over several years of therapy with IM and nilotinib is used to evaluate the
effects of TKIs on the stem cell population. For both drugs, long-term therapy results in a triphasic
decline in BCR-ABL ratio. The first two slopes correspond to the slopes of the biphasic decline in
[2], while the third slope represents an effect on an immature leukemic population. In most cases,
the third slope is negative, but in some patients, it is zero or positive. Based on their results, it
is hypothesized that long-term TKI therapy may affect the immature leukemic population, possibly
including stem cells.

The research community remains divided about the effect of TKIs on leukemic stem cells, with
arguments both in support of [3, 10] and against [2] such an effect. It may be that TKIs target certain
subsets of the stem cell population. In the Roeder model [3], IM acts directly on cycling stem cells,
while quiescent stem cells escape the drug. Determining the true effect of TKIs on stem cells has
significant implications about the limitations of TKI therapy. If TKIs prove incapable of targeting
stem cells, then an alternative approach may be necessary to eliminate the residual cancer burden.
If TKIs affect cycling stem cells only, then a combination of TKIs and cell cycle inducers may be
appropriate [3].

In [2], [3], and [10], a monotonic decline in the cancer population is predicted. However, long-term
patient data often shows oscillations or periods in which the BCR-ABL ratios seem to level off tem-
porarily and then decline further. Although these fluctuations may be partially due to measurement
error or stochastic effects, they may also suggest a separate mechanism, such as the immune system,
that is not included in either the Michor model or the Roeder model. Explaining the nonmonotonic
behavior of some patients remains a challenge in CML modeling.

3.2 The Role of the Immune System

It is known that the immune system is capable of recognizing and mounting an attack against many
types of cancer cells [8]. Immunotherapy is a promising complement to classical cancer therapies,
and much research has been dedicated to boosting the immune response to allow it to fight cancer.
With a better understanding of the immune response to CML, it may become possible to develop
vaccines that aid in prevention and therapy.

In order to elucidate the role of the immune system during TKI therapy, Kim et al. [1] incor-
porate the immune response into the Michor model [2]. They propose the following system of delay
differential equations representing the four cancer compartments (y0, y1, y2, y3) in [2] plus T cells
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(T ).
ẏ0 = (ry − d0)y0 − qCp(C, T )y0, (6a)

ẏ1 = ayy0 − d1y1 − qCp(C, T )y1, (6b)

ẏ2 = byy1 − d2y2 − qCp(C, T )y2, (6c)

ẏ3 = cyy2 − d3y3 − qCp(C, T )y3, (6d)

Ṫ = sT − dTT − p(C, T )C + 2np(Cnτ , Tnτ )qTCnτ , (6e)

where,

C =
3∑

i=0

yi, Cnτ = C(t− nτ),

p(C, T ) = p0e
−cnCkT, Tnτ = T (t− nτ).

Excluding the last term, Equations (6a)-(6d) are the same as Equations (2a)-(2d), except that stem
cells are assumed to divide at a constant rate ry. The last term, qCp0e

−cnCkTyi in all four equations
represents the immune response. The rate of interaction between T and yi is given by kTyi, where k
is the kinetic coefficient. During an interaction, the T cell will engage the cancer cell with probability
p0, and the reaction will result in death of the cancer cell with probability qC . The exponential
e−cnC represents inhibition of the immune system by the cancer population, where cn is the rate of
exponential decay of the immune response.

In Equation (6e), sT is the constant source term, and dT is the natural death rate of T cells. The
third term is the rate at which T cells engage cancer cells and commit to n rounds of division. The
fourth term represents the increase in the T cell population due to successful divisions. The resulting
2n cells are reintroduced into the T cell population at a time nτ after engagement, to account for the
time τ required to complete each of the n divisions. The parameter qT is the probability that the T
cell survives this encounter.

Modeling results and experimental data in [1] suggest that the immune response may play a
significant role in maintaining patients in remission during TKI therapy. An optimal load zone is
defined, which is the range of cancer loads that will stimulate a strong immune response. A small
cancer load will be undetectable by immune cells. On the other hand, a large cancer population will
overwhelm and suppress the immune system. TKI therapy may drive the cancer population below
the optimal load zone, limiting the long-term effects of the immune system. Carefully-timed vaccines
may help to maintain the immune response and potentially drive the cancer population to zero. The
authors propose personalized vaccine schedules, where the timing and dosages of the vaccines are
determined from individual patient data, as a potential complement to TKI therapy.

3.3 Stopping Imatinib

The Stop Imatinib (STIM) [7] trial sought to determine whether patients in sustained remission could
be safely taken off IM. It was found that 61% of patients relapsed, mostly within the first six months
of treatment cessation. Interestingly, the rest of the patients remained in treatment-free remission for
the duration of the two-year trial. Although treatment-free remission may indicate elimination of the
cancer burden in some patients, many patients continued to show low levels of BCR-ABL expression
in their blood. This result suggests that another mechanism, such as the immune system, prevents
the residual cancer population from expanding and taking over the blood.

Several research groups have sought to better understand the disparate outcomes of the STIM
trial. Tang et al. [9] used parametrizations of the Michor model based on pre- and post-therapy
data, to characterize the cancer populations before and after treatment. Their modeling results
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indicate that cancer has much slower growth kinetics after therapy. They hypothesize that TKIs
exert a selective pressure on the cancer population, resulting in different subsets of the heterogeneous
population surviving. Differences in the composition of the surviving cancer populations may partially
explain why only a subset of patients remains in remission after stopping treatment.

In [5], the Roeder model [3] is used to determine which CML patients can achieve a treatment-free
remission. Individual patient data is used to determine rdeg and fω. The parametrized model is then
used to simulate the outcome of cessation of treatment. In 15% of patients, the model predicts that
TKI therapy will eliminate all cancer cells. Additionally, 31% of patients are predicted to achieve a
treatment-free remission that lasts at least two years.

Despite these contributions, determining which patients should stop TKI therapy remains an open
question. Several factors, including the kinetics of the cancer population’s decline and the duration
of remission, are currently being investigated. Moreover, the fact that only a fraction of patients
in the STIM trial remain in remission after cessation motivates the question of how therapy can be
improved to increase this success rate. Combination with other drugs [2, 3] and immunotherapy [1]
has been proposed to further shrink the residual cancer population and possibly allow patients to
stop TKIs.

3.4 Resistance to TKIs

Resistance to TKIs remains a major challenge in the treatment of CML [4]. Because of limitations
in our ability to detect resistant cells at diagnosis, mathematical models offer a valuable tool for
calculating the probability that a patient harbors resistant cells. The likelihood of resistance can
inform the choice of initial therapy, for instance whether to use a single drug or a combination.

Resistance is incorporated into the Michor model [2] by allowing dividing cancer stem cells to
mutate at a constant rate u into a drug-resistant cancer population z. Using a continuous-time
branching process, the probability of resistance at diagnosis is determined to be

P = 1− exp(−uy0(0)s), (7)

where s = ay−d0
d0

. The constants ay and d0 are the parameters in Equations (2a) and (2b), and y0(0)
is the initial cancer stem cell load. Assuming that a later detection time is associated with a larger
value of y0(0), diagnosis in the late stages of CML implies a higher probability of resistance.

Leder et al. [6] seek to characterize the composition of resistant cell populations at diagnosis,
which is very difficult to observe experimentally. Using experimental data on the reproductive rates
of leukemic cells with specific mutations, the probability and size of the resistant clone is computed
as a function of mutation. It is found that a patient is expected to have at most one resistant clone
at diagnosis. The resistant clone will likely have developed in the most recent stages of CML genesis,
a result that emphasizes the importance of early detection. All mutant clones, regardless of growth
rates, are approximately equally likely to occur. However, the more aggressive clones, when they
exist, will be larger on average than their less aggressive counterparts. These findings are used to
evaluate the benefits of combination therapies in patients diagnosed in early or late stages of CML.
The authors recommend that patients with advanced CML receive a combination of at least two
TKIs, while early CML can probably be treated effectively with a single TKI.

4 Future Direction

Despite the recent improvements in our understanding and treatment of CML, many open questions
remain about the dynamics of cancer genesis and therapy. It remains to be determined which cancer
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subpopulations are protected from the effects of TKIs and how combination therapies can be applied
to attack the residual cancer burden. Elucidating the role of the immune system may allow us
to enhance the body’s natural defenses against CML. It is our goal to construct a mathematical
model that is closely tied to the known biology of CML. Once the model is validated using patient
data, it offers a valuable tool for testing hypotheses about treatment scheduling and combination
therapies. Moreover, by applying the model to individual patient data, we may construct patient-
specific therapies that will hopefully improve the percentage of patients who can be safely taken off
TKIs.
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Primary Mathematical Content

• AMSC 670 - Ordinary Differential Equations I. Linearization and stability, dependence on parameters
and initial conditions.

• AMSC 671 - Ordinary Differential Equations II. Stability theory, bifurcation theory.

• AMSC 666 - Numerical Analysis I. Interpolation and approximation, numerical optimization, imple-
mentation of these algorithms in MATLAB.

• AMSC 667 - Numerical Analysis II. Numerical solutions to IVPs, numerical methods for eigenvalue
problems.

Application Area

• BIOE 601 - Biomolecular and Cellular Rate Processes. Mathematical modeling of the dynamics of
biological systems, enzymatic reactions.

• BIOL 704 - Cell Biology from a Biophysical Perspective. Mechanisms of cell biology.
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