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Weather models forecast the future state of the atmosphere from an estimate of the current state of the
atmosphere. However, the atmosphere is a chaotic physical system. That is, small differences illithe current
state of the atmosphere lead to dramatic differences in weather events later on. Even if weather mgdels were
perfect, small errors in the estimate for the current state of the atmosphere will yield large errors in the ­
resulting forecasts. In order to minimize these errors, "data assimilation" seeks an accurate estimate for the
current state of the atmosphere using both current and past observations.

Data assimilation schemes start with an estimate for the current state of the atmosphere provided by
a prior forecast. They seek an analysis state that combines information from current observations and
the forecast state (or "background"), relative to their error covariances, which quantify the uncertainty of
each type of information. Many operational techniques, such as 3D-VAR and 4D-VAR, assume that the
background error covariances are constant in time, spatially homogeneous, and isotropic. Ensemble schemes
use the sample covariance from an ensemble of forecasts to estimate a flow dependent the background error
covariance. In this way, ensemble schemes can better account for the "errors of the day" '[11] than many
operational data assimilation schemes [15].

Satellites provide dense observation coverage over the entire globe. However, these observations are
complicated to assimilate. For example, most satellite observations are taken between analysis times, they
depend on the dynamics over a broad layer of the atmosphere, and they have many biases. This dissertation
studies how to assimilate satellite observations with a particular ensemble data assimilation scheme, the
local ensemble transform Kalman filter (LETKF, [10]). In particular, I compare the analyses resulting from
LETKF and an operational scheme, 4D-VAR, when assimilating observations between analysis times. I
also examine how to select which "nonlocal" observations to assimilate in the local framework ofLETKF.
Furthermore, I explore how to remove satellite observation biases during the data assimilation. Finally, as
part of a team I have worked to adapt LETKF to the NASA fvGCM global weather model and to assimilate
real rawinsonde and AIRS satellite observations on the NCEP GFS model.
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1 A comparative study of LETKF and 4D-VAR

Operational data assimilation schemes traditionally have assimilated available observations as though they,
or their differences from the background forecast, occurred at the analysis time. With a growing number
of observations from instruments such as satellites, many observations are available between analysis times.
Four dimensional data assimilation schemes are able to more accurately take into account the timing of
asynchronous observations. 4D-VAR schemes achieve this by seeking the model trajectory which best fits
all the observations available over a period of time, called the analysis window [13, 3, 22, 21J. Ensemble
data assimilation schemes can be made four dimensional by seeking the linear combination of the ensemble
trajectories which best fits the observations available between analysis times [9].

Using perfect model experiments with the Lorenz 96 40 variable model [16], I have compared the assim­
ilation of simulated asynchronous observations with 4D-VAR and LETKF. Both schemes have comparable
error when LETKF is performed sufficiently frequently and when 4D-VAR is performed over a sufficiently
long analysis time window. Furthermore, the 4D-VAR scheme remains stable for a larger range of analysis
windows than LETKF.

2 Assimilating nonlocal observations with a local ensemble Kalman
filter

In order to be computationally feasible, ensemble Kalman filter schemes may only evolve a limj.ted number
of ensemble members. This limited number of ensemble members is often sufficient to capture the dynamics
within local regions [20, 18, 23, 12]. Therefore, some ensemble Kalman filter schemes obtain an analysis at _
each grid point by assimilating only those observations which are within some local region around that grid
point [18, 23, 10J.

Though ensemble Kalman filter schemes rely on localization, satellite observations are inherently nonlocal.
Satellite observations come in two forms: radiances and retrievals. The satellite measures radiances directly.
These radiance observations are the monochromatic radiation intensity from a particular frequency emitted
over a column of the atmosphere. The radiation transmitted from each height in the atmosphere to the
satellite is indicated by the satellite weighting function (e.g., [14]). For many radiance observations, the
weighting function has large values over a broad range of heights. These large values indicate that the
radiance is sensitive to the dynamics over that entire range, so that the radiance observation has an ill­
defined vertical location. On the other hand, retrievals combine sets of radiance observations to obtain local
observations of the model variables. The satellite retrievals are nonlocal in that their errors can be strongly
correlated across significant distances (e.g., [11]).

The nonlocality of satellite radiances and retrievals complicates selecting which satellite observations to
assimilate to update the model state at a grid point. Therefore, I performed numerical experiments on the
SPEEDY (Simplified Parameterizations, primitivE-Equation DYnamics, [17]) model assimilating simulated
radiance and retrieval observations with LETKF. These experiments support the following observation se­
lection scheme. The state at a grid point should assimilate only those satellite radiances for which the value
of the weighting function is above a tunable cutoff value within the local region around that grid point. For
retrievals, the numerical experiments suggest updating the model state at a grid point by assimilating all
retrieval observations within the local region around that grid point and any other retrievals to which they
are significantly correlated. '

I am currently using these techniques to assimilate more realistic simulated satellite radiance observations
on the SPEEDY model. These techniques will also be applied to assimilate simulated and real AIRS satellite
observations on the NCEP GFS model.
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3 Observation bias correction

Many types of observations are prone to systematic errors in addition to the unbiased, random errors for
which the data assimilation system accounts. These errors arise from two major sources: calibration errors in
the instrument and errors in the operator which maps model space to observation space. Though their source
differs, both types of systematic observation errors are referred to as observation biases. Satellite observations
are prone to both types of systematic errors (e.g., [7]). Often, the satellites are calibrated assuming that the
instrument is looking straight down. This calibration can introduce "scan bias" in observations taken from
an angle. Furthermore, the radiative transfer model used to map model space to observation space is often
prone to errors, called "air-mass" biases. In this study, I aim to correct such "air-mass" biases during the
data assimilation.

Baek et al. [1] showed that LETKF can be used to estimate model biases online. Like Dee and daSilva [5],
this online estimation is achieved by appending the bias parameters to the model state vector and updating
them during the data assimilation. The Type II bias correction in Baek et al. [1J can be applied to estimate
observation biases [6, 5, 4J. A similar technique has been used to find satellite observation biases for 3D-VAR
data assimilation schemes [6], but has yet to be applied to ensemble Kalman filter techniques.

Therefore, I am applying this bias correction methodology when assimilating simulated biased satellite
observations on the SPEEDY model. These simulated biased observations are created using the form of the
bias suggested by Watts and McNally [24J. Currently, I correct these biases by assuming they are of a simpler
form, namely linear combinations of the model state vectors [7, 6, 8J.

4 Assimilation of AIRS observations with the NCEP GFS _

Ultimately, the goal of this dissertation is to be able to assimilate real satellite observations using LETKF
on an operational numerical weather prediction model. To this· end, I am contributing to a group effort
to assimilate satellite observations from the Atmospheric Infrared Sounder (AIRS, [2]) with LETKF on the
NCEP Global Forecast System (GFS). When assimilating non-satellite observations, Szunyogh and Kostelich
(personal communication, 2006) found that the analysis and forecasts resulting from LETKF are superior
to those obtained from the NCEP operational data assimilation scheme, the spectral statistical-interpolation
system (SSI, [19]). We have found that adding the AIRS retrieval observations further improves the state of
the LETKF analysis and the resulting forecasts. This improvement is observed even though the correlations
of errors in the retrievals are neglected. Furthermore, the improvement is most significant when a standard
quality control procedure for the retrieval observations is used to reject observations. I am currently working
to assimilate AIRS radiances, applying the techniques described above, in order to compare with the results
we get using retrievals.

References

[1] S.-J. Baek, B.R. Hunt, E. Kalnay, E. Ott, and 1. Szunyogh. Local ensemble Kalman filtering in the
presence of model bias. Tellus, 58A:293-306., 2006.

[2J M.T. Chahine, T.S. Pagano, and Coauthors. AIRS: Improved weather forecasting and providing new
data on greenhouse gases. Bulletin of the American Meteorological Society, 87(7):911-926, 2006.

[3] P. Courtier, J.-N. Thepaut, and A. Hollingsworth. A strategy for operational implementation of 4D­
VAR, using an incremental approach. Quarterly Journal of Royal Meteorological Society, 120:1367-1387,
1994.

3



nd data assimilation. Quarterly Journal of the Royal Meteorological Society, 131:3323-

M. da Silva. Data assimilation in the presence of forecast bias. Quarterly Journal of
/ical Society, 124:269-295, 1998.

W.-S. Wu. The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system.
r Review, 126:2287-2299, 1998.

s correction scheme for simulated TOVS brightness temperatures. Technical MemOl-an­
iF, Reading, UK, 1992.

G. Kelly. A satellite radiance-bias correction scheme for data assimilation. Quarterly
Meteorological Society, 127:1453-1468, 200l.

alnay, E.J. Kostelich, E. Ott, D.J. Patil, T. Sauer, 1. Szunyogh, J.A. Yorke, and A.V.
ensional ensemble Kalman filtering. Tellus, 56A:273-277, 2004.

:<:ostelich, and 1. Szunyogh. Efficient data assimilation for spatiotemporal chaos: a local
rm Kalman filter. Physica D., (Submitted), 2006.

)spheric Modeling, Data Assimilation, and Predictability. Cambridge University Press,

yogh, E. J. Kostelich, D. J. Patil, G. Gyarmati, M. Oczkowski, B. R. Hunt, E. Kalnay,
Yorke. Assessing predictability with a local ensemble kalman filter. Submited to Journal
'ic Sciences, (Submitted),2006.'

md O. Talagrand. Variational algorithm for analysis and assimilation of meteorological ­
eoretical aspects. Tellus, 38A:97-110, 1986.

Ltroduction to atmospheric radiation. Academic Press, New York, second edition, 2002.

~, H. Li, 1. Szunyogh, B.R. Hunt, E. Kalnay, E. J. Kostelich, and R. Todling. Application
le Transform Kalman Filter: perfect model experiments with NASA fvGCM model. In
'll Meeting, Jan 26 - Feb 2 2006 (Peer Reviewed Manuscript in Preparation).

~dictability- a problem partly solved. In Proceedings on predictability, held at ECMWF
r 1995, 1996.

ospheric simulations using a GCM with simplified physics parameterizations. i: Model
variability in multi-decadal experiments. Clim. Dyn., 20: 175-191, 2003.

Qt, 1. Szunyogh, A.V. Zimin, E.J. Kostelich, M. Corrazza, E. Kalnay, and J.A. Yorke.
Kalman filter for atmospheric data assimilation. Tellus, 56A:415-428, 2004.

J.C. Derber. The National Meteorological Center'ss spectral statistical-interpolation
Monthly Weather Review, 120(8):1747-1763, 1992.

R. Hunt, Eugenia Kalnay, James A. Yorke, and Edward Ott. Local low dimensionality
ynamics. Physical Review Letters, 86(26):5878-5881, 200l.

,rvinen, J.-F. Mahfouf, and A. Simmons. The ECMvVF operational implell).entation
lal variational assimilation: Experimental results with simplified physics. Quarterly
Meteorological Society, 126:1148-1170, 2000. . .

Thepaut, and P. Courtier. Extended assimilation and forecast experiments with a
variational assimilation system. Quarterly Journal of Royal Meteorological Society,

998.

4



23] 1. Szunyogh, E.J. Kostelich, G. Gym'mati, D.J. PatH, B.R. Hunt, E. Kalnay,
Assessing a local ensemble Kalman filter: Perfect model experiments with
Environmental Prediction global model. Tellus, 57A:528-545, 2005.

24] P.D. Watts and A,P. McNally. Identification and correction of radiative tral
atmospheric sounders: AIRS and AMSU-A. In ECMWF Workshop on Ass
resolution sounders in NWP, 28 June - 1 July 2004.


