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Assays based on massively parallel next-generation sequencing platforms
have become the technology of choice for a large variety of transcriptome studies
in recent years due to its decreasing cost and measurement advantages over mi-
croarray platforms [8, 13]. These technological improvements in measurements
have been accompanied by the development of new algorithms and statistical
methodologies to analyze the data that they produce. Chief among these are
methods to detect differentially expressed genes between two or more groups
of interest. Two commonly used frameworks for solving this kind of problem
have emerged: (1) those based on the assumption that the counts generated by
the sequencing process follow a negative binomial distribution, for example DE-
Seq [1] and edgeR [9]; and (2) those that are based on assuming that statistics
based on log-transformed counts follow a Gaussian distribution, for example the
voom [6] transformation in limma [10]. Some of the pros and cons of these two
frameworks have been reported in [11]. '

Coupled with the efficiency and accuracy in RNA-seq technology is the com-
plexity of experimental designs. In particular host-pathogen experiments. In
these experiments an investigator will usually infect a host cell (for example
mammalian macrophages) with a parasite (for example the protozoan T. cruzi).
Samples of the infected host cells are collected at various stages of the infection
cycle and sequenced. The goal of these experiments is to study how the host and
pathogen transcriptomes interact in-vitro. And perhaps provide leads for credi-
ble drug targets that disrupt important pathways in the parasite while minimiz-
ing harmful side effects in the host’s cell. Host-pathogen RNA-seq data presents
many new challenges, in particular with respect to normalization. The natural
discrepancies between the size of the host and parasitic transcriptomes lead to



data sets that are difficult to normalize. The usual assumption of proportion-
ality of gene expression levels between biological replicates does not necessarily
hold [7], and as such one needs a more sophisticated method of normalization.

1 Tukey’s g-and-h distribution as an objective
framework for describing robustness in RINA-
seq data

Tukey’s g-and-h distribution [12] is a simple yet flexible distribution whose two
shape-parameters can be used to accurately describe the skewness (g parameter)
and elongation (h parameter) of a given dataset or theoretical distribution. The
key advantage of this framework over the traditional method of using sample
moments to describe shape, is in the simplicity of the model and the nice statis-
tical properties of the estimation procedure described by [3]. Tukey’s g-and-h
distribution is defined as follows: Let Z ~ N(0,1) and consider the transforma-
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where g and h are any real numbers. The random variable Ty 4(Z) is said
to have the standard Tukey’s g-and-h distribution. The g parameter controls
skewness in both magnitude and direction. When g — 0 the distribution is
symmetric. When g > 0 (g < 0) the distribution is skewed to the right (left)
with the magnitude of skewness described by |g|. For a given g, the parameter h
describes how much more (h > 0) or less (h < 0) weight is at the tails (kurtosis)
of a distribution. Finally, if we scale T,,,(Z) by B (a positive number) and shift
by A (any real number) we obtain the more general g-and-h distribution which
we shall denote by GH(g, h, A, B).

To estimate the g and h parameters we will follow David C. Hoaglin’s quan-
tile method [3]. To begin, let X denote a sample assumed to be generated from
GH(g, h, A, B). The estimation procedure will be in two steps, first we will
estimate g and A. And then conditioned on the g estimate we will estimate
h and B. A is estimated with the median of X, and denoted by Xg5. To
estimate g, we select the quantiles {X, : p = 0.55t1 k = 1,2,...,n}, where
n = |log,(sample size of X)|. And construct the g, which exactly gives X, and
Xi1—p. This is given hy:

g, = _1 log (Xl—p - Xo.s)
P 2p Xo,s - Xp '

The selection of these quantiles places emphasis on the tail behavior of X. We
estimate g as follows:
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§ = median{g, : p = 0.5**" k= 1,2,...,n}. (3)



This provides us with a single summary of skewness that is outlier resistant.
Given an estimated g, and for some p < 0.5 it can be shown that:

22 Xi_p— X
log (B) + h=2 =1o ( ot Il 2 ) 4
g (B) 2 g gexP (—gzp)—exp (gzp) “)

We regress the right hand side of equation (4) on the left hand side. Where
log(B) is the intercept and h is the slope. The ]east squares estimate, h, is used

to estimate k, and B is estimated as B = e:cp(log(B)) where loq(B) is the least
squared estimate of the intercept.

Statistical methods predicated on the strong assumption of normality often
produce simple and interpretable statistics with nice properties. Even in cases
where the Gaussian assumption fails, these methodologies can provide satisfac-
tory results, even for relatively small samples, after certain adjustments have
been made. A prime example is the computation of a more stable variance es-
timate by borrowing information across genes via Empirical Bayesian methods
[10].

Using Tukey’s g-and-h we provide an objective framework to characterize
the robustness of these methods for analyzing RNA-seq data. In particular
we looked at the t-test. We show this in two steps: (1) For a given g and h
parameter we compute the power of the t-test at various levels of fold-change.
Based on this we can characterize how much power is lost when we deviate from
the ideal Gaussian assumptions (g — 0,2 = 0). (2) Given an RNA-seq dataset
we log transform the data and fit each gene under the same biological condition
with a g and h estimate. Depending on where these estimates fall we can get a
sense of how powerful t-test based methods will perform. We obsereve that using
a log transformation of the counts data and assuming a Gaussian distribution
maintains a reasonable amount of power (even without any corrections for the
mean-variance trend). We also use the g-and-h distribution to provide evidence
in support of the negative binomial distribution assumption of RNA-seq data.

2 Normalizing RNA-seq mixture distributions
via L-moments

Host-pathogen RNA-seq data present a significant challenge when it comes to
normalization. Currently the methods for normalizing are based on scaling
each sample according to a certain criterion [1, 9] or quantile based methods
that restrict each sample in the data set to have the same quantiles [2].

The scaling methods are based on the assumption that for biological repli-
cates expression levels for all genes are related by one scalar. However it has
been shown that when the library sizes of biological replicates are substantially
different this is assumption fails to hold [7]. This is particularly true in the
host-pathogen data that we observe. The quantile method is based on the as-
sumption that transcriptomes regardless of the biological conditions should have



the same distribution. While this is true for some experiments it does not hold
generally [7].

Based on these observations we seek to find a normalization method that is
robust to these assumptions. The L-moments of a random variable X are de-
fined as linear combination of order statistics [4]. L-moments fully characterize
a random variable [4] and play a similar role as the regular moments. However,
L-moments enjoy certain theoretical and practical advantages over regular mo-
ments. In particular all L-moments exist if and only if the first moment is finite
[4]. Also compared to sample moments, sample L-moments have lower variances
and are more robust against outliers [5]. L~-moments are defined as follows:
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where Xi., is the kt"-order statistic from a conceptual sample of size n from
X. If the X is continuous then

1
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and Q(u) is the quantile function of X. P?(u) is the r" shifted Legendre
polynomial. Karvanen [5] defines quantile mixtures, Q(u) = > -, 2:iQi(u),
where Q; are the quantile-components of the mixture and the a;s are selected
in order to make Q(u) is well-defined. Based on this definition, then the L-
moments of @Q(u) are obtained as follows:

m

Ar = Zai/\ir; r=1,2,... (8)
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where A;,. are the L-moments of the mixture components, @;(«). This setup
provides natural estimates for the weight a;.

We propose to use quantile mixtures to describe the quantile function for
each sample in a given RNA-seq dataset. Based on these estimates we can pro-
vide statistical tests for checking the equal transtiptome assumption. Also based
on these estimates we will propose a normalization method that will constrain
certain quantiles of interest, thereby providing method that is experiment de-
pendent. Finally we will look at the relationship between our g and & estimates
and the first four L-moments since both statistics describe the same features of
a dataset. It will be interesting to see how the interact since both methods are
bases on order statistics.
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