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1 Scientific Context

The Navier-Stokes equations govern the dynamics of many geophysical flows [4],[8],[6]. Nu-
merical simulation of these equations gives insight into the dynamics of fluids for vast ranges
of length and time scales where physical experiments and theory are intractable. However,
the complex nature of these flows still makes numerical simulation challenging. For exam-
ple flows may experience fronts or sharp features arising from physical properties such as
phase changes, and thermal boundary layers (see figure 1). The development of efficient
computational algorithms to resolve complex flow structures is an active topic of research.
In this prospectus, I introduce the fundamental tools used for modeling fluid flow, and outline
three efficient computational techniques that show promise for modeling geophysical fluid
behavior. Namely, I will discuss high order methods, adaptive mesh refinement schemes,
and parallel algorithms, as examined in the papers of [1], [2] and [3] respectively.

Figure 1: Infinite Pr mantle convection in rectangular geometry, Ra= 106. Temperature field
is shown. [4]

2 Mathematical Model for Incompressible Flows and Thermal Convection

The equations which govern the flow of an incompressible fluid, are derived from equations
which enforce the conservation of mass, the conservation of momentum, and the conserva-
tion of energy of a fluid particle.

∂~u
∂t

+(~u·∇)~u = −1
ρ

∇p+ν∇2~u−~f (1)

ρcp(
∂
∂t

T +~u·∇T) = κ∇2T (2)

∇ ·~u = 0. (3)

Where ρ is the fluid density, ν = µ
ρ is the kinematic viscosity, cp is the specific heat, and κ is

the fluid conductivity coefficient. Depending on properties of specific fluids, these equations
can be simplified. In [3] the full set equations are solved to simulate Mantle convection
but the advective term (~u ·∇)~u is neglected due to the viscous nature of the flow. A heat
transfer problem is investigated in [2], which results in the first and last equations being
thrown away, and v being prescribed via a uniform constant speed of a heat source. Finally,
when temperature change is negligible, the middle equation can be eliminated, and these
equations reduce to the incompressible Navier-Stokes equations, which are used in [1].

1



At the heart of the first two equations is an advection-diffusion model. In these fluids the
interplay between advection and diffusion decides the length scale where energy is trans-
ferred, thus determining the resolution required to capture flow information accurately. This
resolution requirement poses great theoretical, experimental and computational challenges
as the advective nature of the flow begins to dominate diffusive effects. In such flows, ad-
vection and diffusion occur on disparate scales, causing [1] and [2] to treat the two terms
separately via splitting schemes. In the next section, we discuss the discretization methods
used by [3], [1] and [2] to numerically solve these equations.

3 Computational Methods for Discretization of the Navier-Stokes Equations

Discretizations based on low order methods such as finite elements, can become corrupt due
to numerical dissipation and dispersion, thus providing inaccurate parameter estimates, flow
simulations. High order methods, such as the spectral element method are inherently well
suited for such problems due to their exponential convergence properties, and decreased
numerical dissipation and disperion (see figure 2).

3.1 Spatial Discretization

To solve the Navier-Stokes equations efficiently while maintaining a high working accuracy
over long time periods, [1] and [2] use the Spectral Element Method for their spatial dis-
cretization, as opposed to in [3] where a finite element discretization is employed. The
advantage of the spectral element method over finite element method is due to the exponen-
tial convergence property of high order methods, compared to the algebraic convergence of
low order schemes [7]. Spectral methods alone require intense global communication when
parallelized due to their global computational stencil. However, subdividing the computa-
tional domain into spectral-elements yeilds an efficient method that minimizes interprocessor
communication. The spectral element method provides a scalable, accurate solution to the
Navier Stokes equations. This discretization can be improved by using an adaptive grid to
resolve complex features, and coarse features.

Definition 1 (Algebraic Convergence) For fixed polynomial degree and increasing number
of elements, un(x, t) will algebraically approach u(x, t), that is, as the number of elements are
doubled, the error is reduced by a factor of 1

2.

Definition 2 (Exponential Convergence) For fixed number of elements and increasing poly-
nomial degree, un(x, t) will exponentially approach u(x, t), that is, as the Polynomial degree
on each element is doubled, the error is reduced by 2 orders of magnitude.

The spectral element spatial discretization is based on the method of weighed residuals,
in which one obtains an integral equation to solve. The integral equation is then broken up
into a summation of the integrals over individual elements. The integral over each element
is then approximated by performing numerical quadrature. After this is done, the following
system of matrix equations is obtained

Mu̇+C(u)u+νAu− 1
ρ

DT p = M f (4)

−Du = 0. (5)
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Figure 2: Computational Work (FLOPS) required to integrate a linear advection equation for
5 periods while maintaining a cumulative phase error of ε = 10%. Data from [7].

In this system, M is the diagonal mass matrix, A is the discrete Laplacian, C(u) is the nonlin-
ear advection operator, DT is the discrete gradient operator, and D is the discrete divergence
operator. In higher dimensions, each of these operators can be formed as Kronecker tensor
products of their 1D counterparts allowing for significant savings in storage. This formulation
results in very efficient evaluation of the operators which reduces the order of operations
from O(nd+2) to O(nd+1), making matrix-vector multiplies in iterative solvers very efficient.
Additionally, inverses of these elemental operators can be peformed using the Fast Diago-
nalization Method. In [1] Fischer constructs an efficient preconditioner for iterative methods
that produces significant savings in computational time.

3.2 Temporal Discretization

The CFL condition describes the relationship between the maximum time step of an explicit
time marching strategy and minimum grid spacing of the underlying spatial discretization.
Basically, if a wave is moving across a grid, then the time step must be chosen less than
the time needed for the wave to travel to an adjacent grid point. This means that when the
grid point separation is reduced, the upper limit for the time step also decreases. Due to the
close grid spacing near elemental boundaries in a spectral element discretization a harsh
condition on the time step is set in place in order to satisfy the CFL condition

∆t ≤ ∆x
sup|u(x, t)|

. (6)

For basis functions of degree N−1, the time step restriction is ∆t ≤ 6.5
ν

π2

N4 [5]. However, it
is not necessary to integrate this entire system at this small time step, since the convection
term is the dominant limiting factor. For advective flows, [1] & [2] use explicit Runge-Kutta
schemes to integrate the convection part of the flow, obtaining velocities at various times.
These velocities are used in conjunction with a backward differencing scheme to integrate
the diffusive components and obtain the solution at the next time step. This splitting of the
time advancement between the convective part using Runge-Kutta and the diffusive part
using a BDF scheme is known as Operator Integration Factor Splitting (OIFS) [1]. The OIFS
algorithm (using RK4 and BDF3) can be written as:
Start with un−2,un−1,un, & solve the initial value problem
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{
M d

dsû j(s) = −ReC(û j(s))û j(s), s∈ (0, jγ∆s]
û j(tn+1− j) = un+1− j

j
(7)

with time steps ∆sj = ∆t/γ where γ is chosen such that ∆s satisfies the CFL condition. Each
iteration of the RK4 scheme yields ûn+1

1 , ûn+1
2 , ûn+1

3 respectively. After ûn+1
1 , ûn+1

2 , ûn+1
3 are ob-

tained, the third order Backward differencing scheme (BDF3) is used to advance the diffusive
contributions of the system.

(
11
6∆t

M +νA)un+1
i −DT pn+1 =

M
∆t

(3ûn+1
1 − 3

2
ûn+1

2 +
1
3

ûn+1
3 ) (8)

−Dvn+1 = 0 (9)

the initial conditions are then updated for the next RK4 solve.

3.3 Stokes system

After discretizing the Navier-Stokes equations in space and time, as just prescribed, one
obtains the coupled system of equations of the form

[
H −DT

−D 0

](
un+1

pn+1

)
=

(
f n+1

0

)
(10)

where H is the symmetric positive definite Helmholtz operator, D is the discrete divergence
operator and DT is the discrete gradient operator. Solving this coupled system requires a
slowly converging Uzawa algorithm. ever, one can solve a decoupled system of equations
that results in a solution which is accurate of the same degree as the temporal discretization
scheme. Such methods are known as fractional step schemes. By considering the LU
decomposition of the above system matrix, an equivalent two-step procedure to solve for
un+1 and pn+1 can be written as

[
H 0
−D −DQDT

](
v∗

pn+1

)
=

(
f n+1

0

)
(11)

[
I −QDT

0 I

](
vn+1

pn+1

)
=

(
v∗

pn+1

)
(12)

Where v∗ is not divergence free, and Q ≈ H−1. H is SPD, so a preconditioned conjugate
gradient method can be used to solve for v∗. Also, when Q is diagonal, the Poisson operator
DQDT is SPD, and thus one may also use the preconditioned conjugate gradient method to
solve for pn+1.

3.4 P-type Refinement

Adaptive methods need effective error estimators to construct efficient refinement criteria.
In [2] the location of a moving heat source is tracked throughout the domain. Based on the
source location, elements are refined or coarsened to a specified level. When the source of
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complex flow structure is unkown apriori, heuristic methods are often necessary. For exam-
ple, in 1-D if the slope of the solution on a local element is greater than some specified value,
then the polynomial degree of that element may be increased by one. After checking the re-
finement criteria, the solution on each element is then interpolated to the proper degree. In
order to synchronize the solution at element boundaries, a gather-scatter proceedure known
as direct-stiffness-summation is employed. We discuss this proceedure in the next section
within the expanded framework of a parallel calculation.

3.5 Parallelization

Element based methods can be parallelized by processing the solution of a group of ele-
ments on each processor [3]. Applying this strategy involves a slight modification of the
method used to synchronize information at elemental boundaries. This synchronization
method is a gather-scatter routine called Direct-Stiffness-Summation (DSS) [5]. Mappings
of global and local nodes are used to connect degrees of freedom at element interfaces. In
figure (3) the global solution at node 7 (left) is obtained by summing the solution at node
7 on element 1 and node 1 on element 2. If, for example, these elements are on separate
processors, each time a solution is computed on both of them, the solution at node 7 on
processor 1 is summed with the solution at node 1 on processor 2. Thus, to parallelize this
proceedure one simply must determine the dependencies between processors. This can be
performed efficiently in parallel using a bin sort [5].

Figure 3: (Left) Global ordering and (Right) local ordering. Direct stiffness summation Σ′ is
achieved via the mapping between the local and global node ordering.
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Course Material

Primary Mathematical Content

• AMSC 661- Methods for solving linear systems. Finite Element Method, Direct and
Iterative Solvers.

• AMSC 614 - Mathematics of the Finite Element Method. Mathematical framework and
MATLAB implementation of the FEM. a priori and aposteriori error estimates. Conver-
gence rates of the FEM based on grid refinement.

Application Area

• AMSC 698F - Computational gas dynamics. Computational Methods for compressible
fluids.

• ENME 640 - Introduction to Fluid Mechanics. Conservation of mass, momentum, and
energy. Navier-Stokes equations.

• ENME 641 - Viscous Flows. Low Re flows. Creeping flows. Steady and unsteady
flows with exact solutions. Boundary layer theory. Stability of laminar flows. Transition
to turbulence.

• ENME 642 - Hydrodynamics. Classical and computational methods used in analysis
of inviscid, irrotational, incompressible flows.
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