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1. INTRODUCTION

A central problem in computational fluid dynamics is the development of the numerical
approximations for nonlinear hyperbolic conservation laws and related time-dependent problems
governed by additional dissipative and dispersive forcing terms. Entropy stability serves as an
essential guideline in the design of new computationally reliable numerical schemes.

My dissertation research involves a systematic study of the novel entropy stable approximate
methods of nonlinear conservation laws and application of those methods to solve one and
two dimensional systems, e.g., the Navier-Stoke equations, the shallow water equations, and
more. We develop second-order difference schemes which avoid artificial numerical viscosity in
the sense that their entropy dissipation is dictated solely by physical dissipation terms. The
numerical results of 1D compressible Navier-Stokes equations equations provide us a rerharkable
evidence for different roles of viscosity and heat conduction in forming sharp monotone profiles
in the immediate neighborhoods of shocks and contacts. Further implementation in 2D shallow
water equations is realized dimension by dimension. These entropy-stable schemes also play
a crucial role in the simulations of vanishing Leray-o smoothing model for Burgers equation.
All the numerical experiments are implemented by a robust numerical package that offers
a relatively simple, “black-box” solver for a wide variety of problems governed by nonlinear
conservation laws.

2. ENTROPY-STABLE SCHEMES FOR 1D NAVIER-STOKES EQUATIONS

We consider the Navier-Stokes equations (NSE) for compressible viscous flows in one-space
dimension as a system of conservation laws of density p = p(z,t), momentum m = m(z,t), and
energy £ = E(z,t),

0 0 02

e

oz?
They are driven by the convective flux f(u) = [m,gm + p,¢(F + p)]T, together with the

dissipative flux ed(u) = (A+2u)[0, ¢, ¢*/2] Tk [0,0,6] " which stands for the combined viscous
and heat fluxes. These fluxes involve the velocity ¢ := m/p, the pressure p and temperature
6 which are determined by the polytropic equation of state. Here, the viscosity A,pu and
conductivity x are fixed.

The viscous and heat fluxes are dissipative terms in the sense that they are responsible for
the dissipation of total entropy, U(u) = —pS with S = In(pp~7) being the specific entropy,

d(u), u= [p,m,E]T (2.1)

aat( pS) + ai(—mS +x(lnd),) = -\ + QM)C—]; — K (%) <0. (2.2)

Spatial integration of (2.2) then yields the second law of thermodynamics,

d . 2 :
7 ( pS)dz = —(\+ 2pu) /qzd:c—m/<%> dz < 0. (2.3)
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In fact, (2.3) specifies the precise entropy decay rate. For the Euler equations, A = =« =0,
total entropy is precisely conserved, [ —pS(z,t)dz = [ —pS(z,0)dz.

To discretize NSE (2.1) in space, we use the conservative differences for convective flux and
standard centered differences for the dissipative terms on the RHS.
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Here, u,(¢) denotes the discrete solution along the gridline (z,,t) with z, := vAz, Az being
the umform meshsize, d, := d(u,), and f:+_ = f(u,—rp1, -, Uyr) IS a consistent numerical
2

flux based on a stencil of 2r + 1 neighboring grid values. We seek a proper £* 1, so that the
2

semi-discrete entropy balance statement 2£U,(t) + AL(FUJH — FU_%) < 0 is guaranteed with
U,(t) := U(u,(t)) and the consistent numerical entropy flux F,. 1. Instead of adding excessive

amount of artificial viscosity as in many other numerical schemes we construct a more faithful
approximation of (2.1) by utilizing the 3-point entropy-conservative numerical flux f* Y and
thus recover the precise entropy balance dictated by viscous and heat fluxes in NSE. £ vl 18
constructed along a p1ecew1se—constant path in phase space dictated by an arbitrary set of 3

linear independent 3-vectors {r’ }7 —7 and its orthogonal set {£/}77 =3 Details are outlined in the
following main result.

Theorem 2.1 ([TaZh2006], Theorem 3.6). Consider the 3-point semi-discrete approzimation
(2.4), where £ 1s an entropy conservative numerical fluz,
2

* ’ mf/ill —mi+2
fU+2 (’y—l)z ; 2 £i+é) AV, 1=V = Vo (2.5)
j=1 <el,+%> Avu—l—§>

Here v := Uy(u) are the entropy variable, v > 1 is the constant specific heat ratio, and {mi#}
2

are intermediate values of momentum along the phase path. The resulting scheme (2.5) is
entropy-dissipative in the sense that !
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This entropy balance is a discrete analogue of the entropy balance statement (2.3).

Here is our main point: we introduce no spurious, artificial numerical viscosity: by (2.6), the
semi-discrete scheme contains the precise amount of numerical viscosity to enforce the correct
entropy dissipation dictated by NSE.

To complete the computation of a semi-discrete scheme, it needs to be augmented with a
proper time discretization. To enable a large time-stability region and maintain simplicity,
the three-stage third-order Runge-Kutta (RK3) method is used to do the time discretization,
consult [GST2001]. Discussions in detail and numerical results of these novel entropy-stable
schemes for 1D compressible NSE/Euler equations can be found in [Ta2004, TaZh2006].

IWe let z Z,p1 = (zv + 2,41)/2 and 'z“u+% = /2y 2,11
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The remaining challenges in developing and implementing these methods include the higher
(than second) order entropy stable schemes by utilizing the finite element discretization on
wider numerical stencils, and creating a object-oriented software module for these methods.

3. ENTROPY STABLE SCHEMES FOR 2D SHALLOW WATER EQUATIONS

We extend our discussion about the entropy stable schemes to the 2D shallow water equations
with no viscous and source terms as the prototype of 2D nonlinear conservation laws

dyu + 9,f(u) + dyg(u) =0, (3.1)

with u = [h, uh, vh]T being the vector of conserved variables, and the flux vectors f and g
given as -
f = [uh, u?h + gh%/2, woh|", g = [vh, uwwh, v*h+ gh?/2]T.
The total energy U(u) = gh?/2+ (u?h+v?h)/2 serves as the entropy function for the shallow
water equations. Arguing along the same line as the above NSE dimension by dimension, we
obtain the semi-discrete entropy-stable schemes without artificial viscosity for the shallow water

equations

1 1
(£, —f ) +— © ) =0, (3.2)
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with fu+%’“ and 8 e+l

tively, while two sets of vectors {Ej } and entropy potentials 1 are set up separately in z and y
direction as well. Details of entropy stability analysis and numerical results of both inviscid and
viscous cases for 2D Dam-Break problem (consult [FC1990]) have been done in [TaZh2006P].

The boundary effects are not negligible in physical realistic models. To avoid the zero-
height due to the spurious numerical oscillations close to the internal boundary, more realistic
treatment, like the boundary layers, remains an ongoing issue in the implementation of the
entropy stable schemes for 2D shallow water equations.

constructed along the same recipe as (2.5) in z and y direction, respec-

4. APPLICATION TO VANISHING LERAY-&¢ SMOOTHING MODEL OF BURGERS EQUATION

We prove that solutions of the vanishing a—equation, v& +[(I — (ad,)?)'v*|v® = 0 converge
to the entropy solution of the corresponding inviscid Burgers equation u; + (u?/2), = 0 as
« | 0. In our numerical experiments, we compare the Leray—a model with R-C-E (Rosenau
regularization of the Chapman-Enskog expansion) model and the usual artificial viscous model.
In order to truly recover the effects of different regularization models, the entropy stable schemes
with no artificial viscosity in discretizing the nonlinear flux (2.5) are employed in numerical
simulations.
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